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ABSTRACT

Scale space has been widely used in various applications.
Given an application, it is essential to decide optimal scales
under a certain criterion. Subsampling a scale space is a
popular scheme to reduce the search space and thus compu-
tational costs. In the context of the extraction of Regions of
Interest, we will introduce an alternative scheme that aims to
learn scale ranges from training images in order to reduce the
search space. We test the proposed scheme in a case study of
face localization, and obtain promising results.

Index Terms— Region of interest, scale, classification

1. INTRODUCTION

Scale space [6] has been shown an effective model of human
vision. It has been widely used in various applications of ob-
ject detection [9, 8, 11, 4, 7]. Scale selection, i.e., selection
of the optimal scale, is the an important issue in the appli-
cation of the theory of scale space. Scale selection can be
unsupervised (without training images), e.g., in terms of local
extrema [6]. Scale selection may also be supervised, where
the optimality is decided by a specific tagged data. In gen-
eral, it is computationally expensive to select an optimal scale
in a full continuous scale space. Subsampling is thus a realis-
tic scheme to address the computational complexity [6].

In this paper, we will introduce an alternative scheme to
reduce the computational cost, which is based on learning
scale ranges from a set of tagged data. Our study is performed
in the context of the extraction of Regions of Interest (ROI),
where we assume that an image contains a single salient at-
tention only. Note that this assumption is valid in many ap-
plications, including: i) extraction of targeting objects from
high throughput medical images, ii) initialization step of ob-
ject tracking, etc. Fig. 1 shows two ROIs that are the largest
ones under two different scales (10 and 13), respectively. Sub-
jectively, the first ROI represents a face region, while the sec-
ond ROI represents a region of skin (a face and a neck). Fig. 1
illustrates the motivation of introducing a learning scheme (or
using tagged data) for the selection of optimal scale.

Fig. 1. ROIs in two different “subjective” scales: (a) o = 10;
(b) with o = 13.

Specifically, we will propose a learning scheme that con-
sists of two steps. The first step is to tag scale ranges with a
supervised criterion on the ROI extraction. The basic idea of
supervised criteria is to maximize the consistency between a
ROI and a specific labeled data (ground truth) in the context
of ROI extraction. For example, for face localization where
face regions are labeled, the scale ¢ = 10 is then considered
to be better than 0 = 13. The second step is on construc-
tion of feature vector space for classification. In this paper,
the feature vector space is constructed via Gabor filters [2].
Furthermore, Linear Discriminant Analysis [1] is applied to
extract discriminant features for scale classification.

We test the proposed scheme in a case study of face
localization across poses and illuminations that can benefit
the study of face recognition under unconstrained conditions
[13]. We use YaleB as the test dataset that include 9 poses and
64 illumination conditions. The experimental results show
the effectiveness of the proposed scheme.

The rest of the paper is organized as follows: In Section 2,
we propose a learning scheme for the classification of scale
ranges. Experiments are presented in Section 3. Conclusions
and future work are presented in Section 4.

2. A LEARNING SCHEME
In this section, we will propose a learning scheme for the clas-

sification of scale range, as illustrated in Fig. 2. The scheme
consists of two steps. The first step tags training images via
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Fig. 2. A learning scheme of classification

supervised criteria. Given a training set of images with man-
ually extracted ROI, this step tags the scale range of each im-
age via supervised criteria on the optimization of algorithmic
ROIs. The second step constructs a space of feature vectors,
aiming for classification. Gabor features will be employed in
this step.

For convenience, we introduce the following notations.
Denote I an image, I, = I * G, (where G, is a Gaussian
filter with scale o), Ry the ROI of ground truth, /R ;_ a union
of all connected components of I, and R the largest con-
nected component in Ry . To distinguish the ground truth
ROI R; (manually extracted from an image), we call con-
nected components in a scale space as algorithmic ROIs.

2.1. Scale selection via supervised criterion

Our basic strategy of scale selection is to establish a certain
optimality criterion on connected components of an image in
scale space, where connected components can be obtained
from an edge image. Fig. 3 shows connected components in
a sampled scale space of the face image presented in Fig. 1.
The scale increases from 1 to 25 with 3 as the sample step
from left to right and from top to down. The largest connected
component is highlighted with a red closing curve. Visually,
the largest connected component associated with o = 7 and
o =9 are the ones most consistent with the face region, pre-
cisely speaking, the ground truth ROI R;.

Given a scale o, we formally define the consistency be-
tween algorithmic R and the ground truth ROI R; as fol-
lows:

RNR
consistency(Ry,, Rr) = max !
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We propose a criterion that maximize the consistency be-
tween R, and the ground truth ROI R;, as follows:

o* = argmaxconsistency(Ry,, Rr). )

Fig. 3. An example of connected components in a (sampled)
scale space, from small to large scales. The largest connected
component is highlighted with a red closing curve.

Fig. 4 summarizes the supervised criterion for scale selec-
tion, In this paper, we define a full scale space as an interval
[0, min(r, ¢)], where r and c are the dimensions of an input
image.
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Fig. 4. Supervised criterion for scale selection by maximiz-
ing the consistency between algorithmic ROIs and the ground
truth ROL.

2.2. Structuring a scale space of training images

Given a set of optimal scales {o;]i = 1,...,m} obtained
from a set of training images. Denote o,;, = min;{o;}, and
Omax = max;{o;}. We define its scale space as the interval
[Cmins Omax]- We propose a scheme to split the scale space
into two ranges: i) small scales, and ii) large scales. Without
loss of generality, we assume 07 < 09 < --- < ogy,. Define
i* = argmax,|o; 41 — 0;|. We define the small-scale range as



[Omin, Tix), and the large-scale range as [0« 1, Omax)-

For example, assume that we have a scale set {7, 10, 22, 25}.

The scale space is the interval [7,25]. oy« is 10 since 22-
10=12 is the maximum consecutive subtraction. Therefore,
the scale space is split into small-scale range [7,10], and
large-scale range [22, 25].

The advantage of the above structuring method lies in
maximization of the distinction of two ranges of scales, which
in turn increases the separability of features during the classi-
fication. A scale range can be recursively split using the same
strategy, leading a multi-class classification problem. But, we
will be focused in binary classification in this paper for the
convenience of illustration.

2.3. A vector space of features for classification

We construct a vector space of features from images. We will
use Gabor filters to construct features.

Denote G, 9, a Gabor filter of a specific scale o and ori-
entation 0;, where 7 = 1,...,n. Denote I, g9, the convolu-
tion of image I and the Gabor filter, and ||I,, g, ||2 the 2-norm
of the convolved image, which represents an overall response
to a Gabor filter of scale and orientation. By collecting re-
sponses to various Gabor scales and orientations, we have a
vectorized representation of an image as follows:
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We apply Linear Discriminant Analysis (LDA) to extract
the most discriminant feature. Note that what we are target-
ing is a binary classification problem, and thus the dimension
of the most discriminant feature is just 1. Specifically, we ex-
tract the most discriminant features by computing an optimal
discriminant projection according to the Fisher criterion:

wTs,Ww

W= e T,
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where Sp, and S, are between-class scatter and within-class
scatter matrices, respectively. To build a classifier, we model
discriminant features of small and large scales as a Gaussian
Mixture Model (GMM), specifically, a mixture of two Gaus-
sians (G and G3). We apply EM algorithm [3] to compute
the parameters of GMM. An image is classified as a small
scale if G1(vp) > Ga(vr), where vy is the discriminant fea-
ture of I.

3. EXPERIMENTS

In the experiment, we will test the proposed learning scheme
in the case study of face localization with the assumption that
an image contains only one face region. Note that existing
methods of face localization are generally based on learning
face appearance [10, 12] that is not as flexible as the proposed
scheme. Experiments are done on dataset YaleB [5]. YaleB

contains 10 subjects, 9 poses, and 64 different illumination
conditions in each pose. We manually extracted face region
as the ground truth ROL.

Fig. 5 shows algorithmic ROIs associated with the op-
timal scales of images of three subjects, and Fig. 6 shows
algorithmic ROIs associated with the optimal scales of im-
ages of different poses and illumination conditions. Observe
that optimal scales under different illumination conditions are
mostly consistent to each other, while optimal scales under
different poses can differ significantly. This implies that ap-
pearance variation caused pose variations is an important fac-
tor in deciding optimal scales for ROI extraction. As a com-
parison, Fig.7 shows sampled results obtained by Viola-Jones
face detection method [12]. We can observe that Viola Jones
method fails when the face poses are relatively far away from
the frontal pose.

Fig. 5. Algorithmic ROIs associated with optimal scales of
images of different subjects.

With the structuring technique proposed in Section 2.2,
we label all images with two classes, i.e., small-scale range
and large-scale range. We use 2-fold validation to estimate
the classification accuracy. The classification accuracy we
obtained is 84%, which confirms the existence of substantial
correlation between (Gaussian) scale spaces used in the con-
text of localization and Gabor features used in the context of
classification.

Furthermore, we test the running cost of ROI extrac-
tion with learning scale range, compared with the exhaustive
search. Our test configuration consists of a computer of CPU
Pentium 4 (3.40GHz) and Memory 4G with Matlab and C as
the programming languages. Results are presented in Table 1,
where the time unit is second.

sample step | with learning (sec) | without learning (sec)
1 31 42
2 21 34
3 9 18

Table 1. A comparison of running costs of ROI extraction
with and without learning scale ranges.

4. CONCLUSIONS AND FUTURE WORKS

In this paper, we propose a learning scheme for the classifi-
cation of scale range, aiming to reduce the search space of
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Fig. 6. Algorithmic ROIs associated with optimal scales of
images of different poses and illuminations. A row represents
a pose, and a column represents an illumination condition.

Fig. 7. Results obtained by Viola-Jones face detection method
[12].

scales. Experimental results have shown the effectiveness of
the proposed scheme. In the future, we plan to integrate the
learning scheme of scales with other localizations methods,
such as active contour, level sets, where weighting parame-
ters are expected to be optimized too.
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