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Abstract

Automatically determining which pixels in an image view
the sky, the problem of sky segmentation, is a critical pre-
processing step for a wide variety of outdoor image in-
terpretation problems, including horizon estimation, robot
navigation and image geolocalization. Many methods for
this problem have been proposed with recent work achiev-
ing significant improvements on benchmark datasets. How-
ever, such datasets are often constructed to contain images
captured in favorable conditions and, therefore, do not re-
flect the broad range of conditions with which a real-world
vision system must cope. This paper presents the results
of a large-scale empirical evaluation of the performance of
three state-of-the-art approaches on a new dataset, which
consists of roughly 100k images captured “in the wild”.
The results show that the performance of these methods can
be dramatically degraded by the local lighting and weather
conditions. We propose a deep learning based variant of an
ensemble solution that outperforms the methods we tested,
in some cases achieving above 50% relative reduction in
misclassified pixels. While our results show there is room
for improvement, our hope is that this dataset will encour-
age others to improve the real-world performance of their
algorithms.

1. Introduction

Image labeling algorithms assign a label (e.g., car,
ground, sky, building) to every pixel in an image. Out-
door imagery captured “in the wild” poses challenges to
these algorithms due to the variety of possible lighting and
weather conditions. We focus on sky segmentation in single
images which, while seemingly simple, is actually a very
challenging and unsolved problem. Outdoor scene label-
ing has received much attention from vision research in the
past few years, since it is an important pre-processing step
for many high-level vision algorithms. Existing approaches
perform well in favorable conditions (e.g., clear blue sky),
however the effects of weather, season, and time drastically
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Figure 1. One scene, observed over a long period of time, can
change drastically in appearance due to time of day, day of year
and weather. Above, we show six sample scenes from one static
outdoor webcam and the results of three sky labeling methods
(blue represents correct classification, red represents incorrect
classification).

alter the appearance of an outdoor scene (Figure 1). This pa-
per presents an extensive evaluation of three existing meth-
ods [3, 12, 17] on a challenging real-world dataset.

We selected these methods for both their contributions
to the community and their performance on benchmark
datasets. However, benchmark datasets do not completely
capture the variational appearance of the sky. Camera op-
tics combined with the dynamics of sun position, cloud for-
mations, and more, results in tremendous variability of sky
appearance. The combination of these factors motivates the
construction of a dataset representative of these real-world
scenarios.

To build such a dataset, we take advantage of imagery
collected from static outdoor cameras over long periods of



time, thus increasing the probability of exposure to differ-
ent atmospheric conditions. Since the cameras we use are
static, one ground truth mask can be used to generate a
large training set with significant sky appearance variabil-
ity. In order to highlight various conditions in which la-
beling performance is suboptimal, we augment each image
with weather observations collected from nearby weather
stations. Often in real-world applications, it may not be
possible to obtain weather data, so we also compute high-
level transient scene attributes, related to weather and ap-
pearance, for each image using the method of Laffont et
al. [10].

Using this dataset, we perform several experiments to ex-
amine the impact that weather and time has on each meth-
ods performance. The key contributions of this work are: 1)
introducing a large labeled image dataset; 2) presenting the
results of a large-scale empirical evaluation of three state-
of-the-art techniques for sky segmentation; 3) suggesting
how the observations we make from our evaluation should
guide future work on sky segmentation, and more generally
pixel labeling; 4) a deep ensemble method that combines
raw image data and existing methods’ output to make better
predictions.

2. Related work
Recent interest in outdoor imagery has led to various al-

gorithms for calibration [8, 20], labeling [3, 18], geoloca-
tion [7, 22], geometry recovery [2, 8] and others. For ex-
ample, Jacobs et al. [5] exploit pixel time-series from static
webcams to recover a cloudmap and an estimate of scene
geometry. Cues from multiple images (e.g., moving clouds,
sun position) can be used as input to higher level vision al-
gorithms (e.g., calibration [20], scene shape [4, 21], horizon
estimation, geolocation [7]), but automatic detection of sky
regions is difficult from single images. Weather detection
and understanding has been successfully used in robot vi-
sion for navigation [9], driver assistance systems [14, 23]
and image searching [16].

Scene labeling methods attempt to assign each pixel in
an image to one of several categories of objects (e.g., sky,
ground, road, tree, building). These methods [3, 11, 17,
18, 19] rely on the local appearance of the objects learned
from a training set of instances. The scene parsing prob-
lem is most commonly addressed by a local classifier (using
engineered features, or more recently, learning features us-
ing deep learning architectures) constrained by a graphical
probability model (e.g., CRF or MRF) where global deci-
sions are made to include high-level reasoning about spatial
relationships.

In this work, we present an empirical assessment of the
performance of sky segmentation in the wild. Our work is
most similar in conception to that of Stylianou et al. [15]
who analyze feature matching performance over long time

periods. We evaluate three methods that output (either di-
rectly or as a by-product) a sky segmentation: Hoiem et
al. [3], Tighe et al. [17] and Lu et al. [12]. The choice for
these methods was motivated by their impact in the vision
community and publicly available code. The contribution
relevant to sky segmentation in the work of Hoiem et al. [3]
is their use of geometric context (e.g.: a rough estimate of
scene geometry) for three classes (sky, ground and verti-
cal) inferred using statistical appearance learning. We only
use the geometric label outputs from their algorithm. Tighe
et al. [17] introduce an image parsing method based on
combining region-level features with exemplar-SVM slid-
ing window detectors. We only use the “sky” label from the
final results of their algorithm (i.e., other labels are consid-
ered “not sky”). Lu et al. [12] explore single image weather
classification into two classes: sunny or cloudy. We use
their sky segmentation output in our evaluation.

3. Dataset

We introduce a new dataset [1] of labeled outdoor im-
ages captured in a wide range of weather and illumination
conditions. To the best of our knowledge, this dataset is
the largest in existence with annotated sky pixels and as-
sociated weather data. Motivated by difficulties of existing
methods to handle extreme appearance variations of sky re-
gions, we take advantage of the long-term webcam imagery
from the Archive of Many Outdoor Scenes (AMOS) [6]. We
selected 53 cameras from AMOS that were static (i.e., no
camera movement throughout one or more calendar years)
and downloaded all the available images for that period,
(an average of one year, with around ten thousand images
per camera). To keep the dataset size reasonable, we keep
five randomly selected frames for each day. For each cam-
era we manually created a binary mask segmenting sky and
ground. The average coverage of sky pixels for all the web-
cams is 41.19%, with standard deviation 15.71%.

To quantify the effect of weather condition on labelers,
we retrieved weather data from Wunderground.com for
all of our cameras. Weather data was retrieved at every
camera location for the entire period of the downloaded
imagery, and the closest observation was associated with
each image. For each frame we have indicators for sev-
eral weather conditions: light rain, partly cloudy, clear,
haze, scattered clouds, mostly cloudy, overcast, fog and
light freezing fog.

In addition, we augment each image in the dataset with
Laffont et al.’s [10] “transient attributes”, which are high-
level properties describing the appearance of a scene, iden-
tified via crowdsourcing on thousands of images from 101
webcams. We take advantage of their learned regression
models to extract transient attributes for all of our images.

Wunderground.com
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Figure 2. Sample images from five cameras (left-most column).
In the right columns, we show cumulative per-pixel MCR for all
images, for all three methods evaluated. Red and blue indicate
high and low, respectively, misclassification.

4. Experiments
We processed every image in our dataset through the

previously mentioned methods using the source code pro-
vided by their respective authors. While each method was
pre-trained, running approximately 100,000 images through
each method is computationally challenging. Our attempt to
compensate for the large-scale processing of each method
involved distributing the computation over a 16-node clus-
ter for several weeks.

Running each method on tens of thousands of images
simply led to software crashes. To minimize this, we opti-
mized various components of the methods, which allowed
us to successfully run this large scale evaluation. There
were some images that led to failure. These images were
either completely dark, saturated, or with reduced visibil-
ity due to fog, etc. If a method failed for a given image,
we excluded the image from the evaluation set. The tun-
able parameters used in this evaluation were the same as the
original authors in their own evaluations.

4.1. Overall Accuracy

To evaluate the methods we use a per-pixel performance
metric, the misclassification rate (MCR), computed per
frame as follows: MCR =

# of incorrectly classified pixels
total # of pixels .

Each of the 53 webcams has roughly 1500 images. In Fig-
ure 2 we show five sample cameras (left column) with av-
erage MCR for every method (right three columns). Over-
all, Tighe et al. achieved the best performance, with low-
est average MCR of 16.41%, σ = 18.98%. Hoiem et

Percentage of Images in Dataset with best MCR
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Figure 3. Distribution of best MCR per image with respect to
method for the entire dataset.

al. came in second place, with average MCR of 20.69%,
σ = 22.13%. Finally, Lu et al. with average MCR of
27.69%, σ = 23.50%.

While MCR is a good overall performance indicator, we
also report type I errors (false positive, pixel is labeled as
sky when it is not) and type II (false negative, a pixel is la-
beled as ground when it is not) for each method. As seen
in Table 1, Lu et al. and Hoiem et al. have significantly
less false positive errors than Tighe et al. who achieved
lower overall MCR. To gain further insight into the meth-
ods, we counted the number of images in the dataset for
each method with the best MCR. While the overall lowest
MCR was achieved by Tighe et al., their method was out-
performed on slightly less than half of the images in our
dataset. The lowest MCR was achieved on roughly 40% of
the images by Hoiem et al., and 10% by Lu et al., as seen in
Figure 3.

We now consider individual pixels. It is often the case
pixels are independently labeled correctly by at least one
method. We compute the per-pixel MCR, by counting a
pixel as correctly classified when either one of the three
methods labeled it correctly, and incorrect otherwise. Over-
all, the per-pixel MCR is 1.9%. This suggests that improve-
ments can be achieved using the methods results as a strong
prior, combined with other factors that were found to have
an impact on accuracy.

4.2. Impact of Lighting on Accuracy

We observe that lighting conditions have a significant
impact on the accuracy of scene labeling methods. When
the sun is at its highest point in the sky, the scene is most
equally illuminated. As the day progresses, and the sun low-
ers, the possibility of shadows or the appearance of the sun
in the view increases. To investigate the effects of lighting
on accuracy, we visualize the average MCR with respect to
the time of day in Figure 4.

When the sun is at its highest point in the sky, around
noon, all labelers are at peak performance. A similar result
is obtained when visualizing average MCR with respect to

Table 1. Average type I & II errors.
Method Avg. type I error Avg. type II error

Lu et al. 0.87% 26.81%
Hoiem et al. 0.91% 19.7%
Tighe et al. 14.68% 1.73%
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Figure 4. Time of day has a significant impact on labeler perfor-
mance. All methods achieve their best performance when the sun
is at its highest point, around noon. Less dramatic, month of year
also has an impact on performance, with the best results seen dur-
ing the spring and summer months.
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Figure 5. Average MCR for each method given a subset of weather
conditions. To reduce the effect of lighting, we only evaluated
images taken between 8:00 a.m. and 6:00 p.m. with respect to the
local time of each image.

month of year. We believe the combined higher rates of
failure in the winter months of the year are likely due to
shorter days as a result of the Earth’s tilt.

4.3. Impact of Weather on Accuracy

We now explore the effects of known weather conditions
on MCR for the three methods. In Figure 5 we plot the
MCRs of each method given a subset of weather conditions.
We highlight four weather indicators (fog, heavy rain, light
snow and snow) where the most accurate labeler, Tighe et
al., is outperformed by Hoiem et al. We believe this effect is
attributed to labeler confidence, i.e., low type I error meth-
ods have an advantage for images with general occlusion.
Contrary to our expectations, two of the sky labeling ap-
proaches (Tighe et al. and Hoiem et al.) are mostly robust
to cloud coverage.

4.4. Impact of Other Attributes on Accuracy

We select three transient attributes that are related to
a scene appearance as a function of time of day: bright,
night, midday, and three weather-related attributes: dry,
winter, summer. We threshold the regressor responses (a
real-valued score on the interval [0, 1] indicating the pres-
ence of the attribute) to > .6 and plot the distribution of the
resulting images in Figure 7. We observed that the transient
features, when above threshold, are indeed related to time
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Figure 6. Probability distribution of MCR given transient features
above a threshold. Top left: Tighe et al. and Hoiem et al. more
robust to cloudiness than Lu et al. Top right: high failure rates
for all three methods when “gloomy” is detected. Bottom left:
all three methods are not robust to “cold” images. Bottom right:
as expected, high failure rates occur for poorly lit images. The
threshold for the transient attribute regressors was 0.6.
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Figure 7. Left: transient attributes (bright, day, midday) are related
to ground truth hour of day. Right: transient attributes (dry, winter,
summer) are related to ground truth month of year.

of day and day of year. This provides strong support for
using such features as a surrogate for weather data.

We now explore labeler robustness with respect to tran-
sient attributes as predictor of high labeler failure rates. In
Figure 6 we show that Hoiem et al. and Tighe et al. are
more robust to cloudiness conditions than Lu et al. The best
predictors of high labeler failure are the “gloomy”, “night”
and “cold” transient attributes. The methods we evaluated
seem to be robust to cloudiness. In Figure 8 we show sam-
ple images with high “cold” and “gloomy” attributes.

5. Deep Ensemble Approach
Based on our experiments and the insights we gained

from the data analysis, we show improvements can be made
by combining the outputs of the three methods we evalu-
ated. While Tighe et al., achieved best overall performance,
on a per-image count, they are outperformed on nearly half
of the images in the dataset (Figure 3). This suggests that
an ensemble method which uses the three methods’ output,
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Figure 8. Sample images with “gloomy” and “cold” transient at-
tributes above 0.6. These images are difficult due to sky color and
clouds/haze/fog.

combined with raw image data, could outperform individual
methods on our challenging dataset. We now describe an
ensemble method based on a deep recurrent convolutional
neural network (rCNN) architecture.

5.1. Recurrent CNN

We use a recurrent convolutional neural network, simi-
lar to that of Pinheiro et al. [13]. The network consists of
three convolutional layers with hyperbolic tangent activa-
tion functions. The recurrent architecture involves the com-
position of three instances of a convolutional neural net-
work, with each instance sharing identical parameters. In-
put to the rCNN is a 3D matrix with the smallest dimension
indexing over the color channels. The full model file, solver
definition and learned weights of our networks are available
at [1].

We trained two rCNNs, one only with raw image data
and another with the raw image data augmented by the out-
puts of the methods we evaluate. For the second network,
we augmented the RGB input with the binary output of
the three methods we evaluate, which results in a width ×
height × 6 input matrix. The output of the networks are
probability maps of the same size as the input image. We
threshold the output to obtain a binary label. Our data was
split into a training set of 40 cameras and 13 test cameras.
We trained each network on an NVIDIA Tesla M2075 for
two days.

5.2. Evaluation

The results show rCNNs can be successfully used as en-
semble methods to learn a nonlinear combination of raw
image data and the outputs of other methods to improve ac-
curacy. Overall, our ensemble outperforms the three meth-
ods evaluated. On the test cameras, Tighe et al. averaged
an MCR of 18.19%, Hoiem et al. averaged 23.08%, and
Lu et al. averaged 30.60%, while our rCNN ensemble aver-
aged an MCR of 12.96%, a relative improvement of 28.75%
from Tighe et al. The rCNN trained on raw image data
alone achieved an average MCR of 17.28%. We compare
this baseline approach to the ensemble in Figure 10.

To gain a better understanding of where improvements
are most significant, we aggregate with respect to month
of year and hour of day, as seen in Figure 9. We note
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Figure 9. Comparison of our recurrent neural network ensemble
with three compositions. The comparisons are made w.r.t. Tighe
et al. and the best MCR per-image. rCNN outperforms the best
method per-image metric when aggregated by month. Aggregation
by hour of day reveals highest performance gains during daylight
hours.

significant improvements compared to the best per image
MCR1 during daylight hours. Aggregation with respect to
month of year shows improvements for all months, with
higher performance gains during summer months, possibly
attributable to longer days and “easier” weather conditions.

6. Conclusion
To analyze sky segmentation performance in real out-

door scenes, we created a new challenging dataset from
static outdoor webcams over long periods of time with
known ground truth location to supplement local weather
observations. We extensively evaluated the performance
of three sky labeling methods (Tighe et al. [17], Hoiem et
al. [3] and Lu et al. [12]) under real-world weather and il-
lumination conditions. This exploratory study was driven
by the importance of accurately segmenting sky pixels from
outdoor imagery, as it serves as input to many high-level
vision algorithms. Our results show that sky labeling al-
gorithm performance varies most significantly with respect
to illumination conditions, i.e., sun position as indicated by
time of day. In addition, we found that certain weather con-
ditions and time of day are good predictors of current la-
beler errors.

We proposed a deep ensemble method that combines
the output of existing methods with raw image data using
an rCNN. Our model achieves better overall performance
than any of the individual methods. Additionally, we aggre-
gated results with respect to hour of day (the most impor-
tant factor driving sky labeler performance) and compared
our ensemble with a metric that uses an oracle to select the
best method, showing improved performance during day-
light hours. This work suggests two directions for future

1The best per-image metric gives us an empirical performance bound-
ary treating all three input methods equally.
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work. One is in exploring alternative methods for integrat-
ing weather metadata into the sky segmentation algorithms.
In particular, we think that adding the metadata earlier in
the processing pipeline would be beneficial. The other is in
exploring how incorporating temporal context and weather
metadata can improve performance on other vision tasks.
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