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Evaluation (cont’d

Does the joint model improve price estimates?

Task: Estimate the Learn models using linear, ridge, and random
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curb appeal. How does semantic label affect home price?

Our Approach: Combine street-level photographs We compare our joint model, P(M) + C(1), 3e";a"ti° i Mii" j‘:o
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and objective attributes. We find that using against two baseline models: Lawn $ 5,485.00
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We constructed a dataset of homes with photos, a curb appeal modifier. C(/) adjusts the price Hunting Lodge (outdoor) 5 855.00
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* Each home has We apply linear regression to select the subset of - Ngative
a front-facing e b o r B B . M attributes the highest R%. These attributes are: the
image captured & 7 property area, # of bedrooms, # of bathroomes, Conclusions
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